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NOTICE

The Aerospace Engineering and Research Departments of the Electronics

Division of General Mills, Inc. were purchased by Litton Industries, Inc. on

11 September 1963. This acquisition, now known as the Applied Science Divi-

sion of Litton Systems, Inc. , is successor in interest to the Electronics Divi-

sion of General Mills, Inc. on Contract No. AF 19(628)-2783 per Modification

No. 2 to the contract which details the Terms and Conditions of the Novation

Agreement entered into as of 11 September 1963 between General Mills, Inc. ,

Litton Systems, Inc., and the United States of America.
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rABSTRACT

This report, the third in a series, continues the presentation of results

of the computation of the shape of an axi-symmetric free balloon. Flat-top

balloons with superpressure, with subpressure, and balloons with circum-

ferential stress are considered. Circumferential stress is both held con-

stant and varied as a function of meridional stress. Certain limitations on

Icircumferential stress are noted. Shapes, meridional stresses, and cir-

cumferential stresses are presented. In addition, similar results are pre-

sented for capped balloons with a double-weight cap covering the upper half

of the balloon.
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DETERMINATION OF THE SHAPE
OF A FREE BALLOON

Scientific Report No. 3

I. INTRODUCTION

This report is the third of a series devoted to determining the shape of

and stresses in free balloons. Scientific Report No. I in this series (Refer-

ence 1) pointed out that balloons are being flown today which are outside the

range of design parameters provided by the University of Minnesota (Refer-

ence 3). Therefore, in Report No. 1, a literature survey was made and the

equations defining the shape of a free balloon were derived. In Report No. 2

(Reference 2), the shapes and meridional loads were presented for fully in-

flated, zero superpressure, zero circumferential stress balloons. Balloons

were considered which had all the payload at the bottom, part of the payload

at the top, and which had additional lift at the top. Extensive Sigma Tables

for the usual flat-top balloon were included.

This report will present shapes and stresses for representative balloons

';;ith superpressure, subpressure, and circumferential stress. The case of

capped balloons is also presented. Only single bubble balloons with a fiat top

are considered.

II. BALLOON TYPES INVESTIGATED

As soon as the restrictions used in Report No. 2 are removed, the possi-

ble types and subtypes of balloons increase rapidly. A definitive table of bal-

loon shapes, such as presented in the Sigma Tables of Report No. 2, becomes

impractical. With a digital computer, a particular design with all parameters

exactly specified without interpolations and extrapolations from charts or

tables, can be quickly investigated. In fact, the greatest value of this report

may be that it will give the designer a near solution to his problem so that his

computer work can be performed expeditiously. The types of balloons investi-

gated follow.

-1]-



A. Superpressure and Subpressure without Circumferential Stress

Balloons investigated in this category were considered to be similar to

the polyethylene type. For this reason the maximum superpressure used

was a/X = 2. A maximum subpressure of aIX = -2 more than covers the

usual balloon with a truncated duct. Circumferential stress was maintained

constant at zero.

B. Zero Superpressure with Variable Circunferential Stress

The case of zero superpressure and zero circumferential stress was ex-

tensively studied in Report No. 2. Recognizing the fact that seams in poly-

ethylene and Mylar-scrim balloons today are capable of withstanding quite

high loads, the effects of nonzero circumferential stress were studied. The

circumferential stress (t c) was specified to be some constant fraction of the

net meridional stress (t m); that is: tc = t 1 (tim - t ), where t is themmo 0

initial value of the meridional stress. The reason for this choice is as fol-

lows. It is a fundamental result of membrane theory that at a point on the

membrane subject to a pressure, p.

t t
= c (1)

c m

where R and R are the circumferential and meridional radii of curvaturec m
respectively. From the analysis of Scientific Report No. 1 we have

SI I I
tm rcos + (pr sin 0 + rwds

From simple geometric considerations

r = R cos 0.
c
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11 Substituting these two equations in (1) above we have

pr - + (pr sin e + rw)dsc Cos e Rm csi

and

lim t -L 2
r - o 23t R cos a

m o

This result indicates that, for l.0oI <

1) If t c is to be positive, Rm must be negative. Such is the case
in a rubber balloon.

2) If Rm is positive, t c must be a compressive circumferential
stress, which, of course, is not possible with balloon materials.

3) If t c is to be zero, either Rm must become infinite and/or there
is no payload, L. at the apex.

For e = i2, t will be zero as L = 0 in this case. It is interesting to noteO c
that these results are independent of the pressure in the balloon. For the

balloons under consideration in this investigation 80 will be less than W/2 and

it will be desirable to have some fullness at the apex so the bottom must be

conical. That is. R is infinite and t must be zero. Values of t I = 0. 5,

1. 0, 1. 5, and 2.0 were investigated.

i C. Zero Superpressure with Constant Circumferential Stress

It is entirely possible to tailor a balloon gore so that R < 0 in the
m

vicinity of the payload. To investigate this case, an estimate of an upper

bound on tct when r = 0, was necessary.

-3-

j



tc L/P

b - 2i(Rm/X) cos e

For sigma in the range of 0. 4 or less, maximum e0 might be 60 degrees.0

Minimum R IxA might be -1 and maximum L/P will be 1. Therefore, am

maximum value for T is on the order of 1. Cases for which E = 0. 2 were studied.

D_ Capped Balloons

Occasionally free balloons are built with heavier material over some por-

tion near the top. Balloons of this type were investigated to observe how

much they differed from constant-material-weight designs. The weight of

the heavier material was arbitrarily chosen to be twice that of the material

below the cap. The top half of the balloon was again arbitrarily chosen for

the capped portion; i. e., the cap extended downward to approximately the

point of maximum radius. Sigma values used were 0. 1, 0. 2, 0. 3, 0.4, 0. 5

and 0. 2, 0. 4, 0. 6. 0. 8, 1. 0 for the bottom and top halves respectively. Only

zero superpressure and zero circumferenti" stress were considered.

ILI. SHAPE EQUATIONS

The differential equations for the shape of a free balloon have been derived

in Scientific Report No. I (Reference 1). They are:

d ( + k Zpp'

d Fkpo$' + Tp'

where p = sin 

= Cos 8.

-4-



The initial value of F is (L/P)(2i cos 9) -  The symbols used are defined in[O 0
Appendix I.

In the previous reports in this series, the circumferential stress, T

has been held zero. in this report it has been defined as:

T = t 0+t I (T M -t )

with t and t 1 permitted to take on values at the investigator's discretion.

TThe differential form of T could have been included as an additional dif-

ferential equation. This was not done; instead, T was computed at the end of

Eeach increment and then held constant throughout the next increment. This

has a negligible effect on the results.

SAn improved method for computing balloon volume is given in Appendix II.

F IV. RESULTS

rA. Superpressure and Subpressure without Circumferential Stress

Shapps and meridional material loads of superpressure and subpressure

L balloons are shown in Figures 1 and 2. In addition to the variation in shape,

it is interesting to note that meridional loads are considerably higher in the

superpressure types than in the subpressure types. This is due to the large

bottom apex angles for superpressure ba;lloons (see Figure 3). Comparison

fwith results for zero superpressure shows that the meridional loads with

zero superpressure are also greater than with subpressare. Neglecting the

p problems of maintaining a relatively large subpressure, considerable

savings in weight should be possible with subpressure bailoons because a

smaller E may be used for a given payload. Gore length as a function of Z is
] ,_ shown in Figure 4.

"There is considerable difference in scale between Figure Za and 2b. This
is done to present the data more clearly and is not intended to imply a dif-
ference in accuracy.

-5-
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B. Zero Superpressure with Variable Circumierential Stress

For balloons with superpressure and a conical bottom it was shown earlier

that the circumferential stress must initially be zero. Figure 5 shows such

balloon shapes. The bottom apex angle is shown in Figure 3. Meridional loads

and corresponding meridional and circumferential stresses are shown in

Figure 6. Meridional stress has a minimum near, but a little below, the point

of maximum radius as may be expected. As circumferential stress is allowed

to take on larger values (i. e., t1 is increased), the maximum meridional load

is reduced. Also for t I > 0 the maximum is not at the top. These two effects

are both due to the redistribution of stresses.

After the meridional load passes its maximum and again reaches its

initial value, the circumferential stress also reaches its initial value - zero.

Beyond this point, the circumferential stress tends to become compressive.

If circumferential stress is then held at zero the remainder of the ba/loon is

natural shape. In some of the results of Figure 6a this was the casc.

From Figure 6 it can be seen that by proper choice of the constant t1 , the

circumferential stress can be made equal to the meridional stress at some point

on the gore. If they are then held equal for the remainder of the gore an ap-

proximate sphere top results. In this case meridional stress wil not diverge

as it usually does.

As seen in Figure 6, meridional stresses diverge at the top of the balloon.

Circumferential stresses will usually diverge also. There is one exception.

Circumferential stress is calculated as

t c = t l(t m -tm )
0

= [( TI;P) - (TIP)0 ] VP/Zxr1

- 12 -
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In the limit, at the top, as r -- 0, tc-. c unless T/P (T/P)o . In this special
case

lira tlP[d(T/P)/ds] tl P

lir r - 0 1 d d (TIP)
r-0 c lir ZEK[ dr/ds9 top

It is seen in Figure 6 that the slope of (T/P) has a finite negative value at the

top of the balloon so t will have a finite positive value. No theoretical basis

has been developed for it but from the results of Figure 6 it appears that at

the top of the balloon T/P = (T/P) when t I. For 0< t1 < 1, (T/P)top is

greater than (T/P) and t increases without bound. For t I > 1, (T/P)top is

less than (T/P) and tc attempts to become negative. As this is not possible

with balloon materials, t must be held at zero. This prevents any further

decrease in T/P.

As the constant t1 is increased, the circumferential stress approaches

the meridional stress. It was found that when E = 0. 6 and t I = 2. 0, it is not

possible to have a flat-top balloon. It is obvious from Figure 6b (and from

the computer results) that in this case circumferential stress will exceed

meridional stress. When E = 0.2 and t1 = 2. 0 a flat-top balloon is possible,

but from Figure 6a it is seen that only a small increase in t I would be possi-

ble. Addition of superpressure would permit larger values of t1 but the

limitation would still exist that circumferential stress may not substantially

exceed meridional stress.

Gore lengths for this type balloon are shown in Figure 7.

C. Zero Superpressure with Constant Circumferential Stress

In Figures 8, 9, and 10 the balloon shape, meridional load, and bottom

apex angle for the case when circumferential stress is constant throughout,

is compared with the natural shape results, As predicted inSection II, the

lower portion of the balloon has a negative meridional radius of curvature.

Due to the presence of circumferential stress the maximum meridional load

- 16-



3.70 .. 7 iF t

I I I ~ T.

3.6 i-4:0-

.4 4
L--4

0

0. 101. .0 1
2.50~~~ ItI i _ .~-

I stes prprtoa t e merdioa sres

2.40~~~__,1 -,I--1~~



0I

1.55

z/x

1 d- 7

00.5 1.0[
rA

Figure 8. Shapes Of balloons with constant circumferential stressF
(Zero superpressure, E 0. 2)

- 18-



2.
Ii2

1.0

N 0.1

00

C 0.5



I
i

5 i i N.....

-jL
-'- L s 'F2 ! ' ...

L a

,-._. - _:: . I - ! -

- - -A-

30 0.1 0. . .

f T ---- -'v-- --- ---- --- -.::

" " " I :- ~ 20
"_ _ _ I i" _- : " ; \. * -- --V-7I -'::

..:' ' ; . .: , I

"'_,_____ -_"_ I ,- I* 1 - : -1
.. .. . , . .. ! " .. . .i

_ ___ '"_ __ _ .. , - .- A----I "

0 0.1 0.2Z 0.3 0.4

Figure 10. Bottom apex angle for balloons with
constant circumferential stress
(Zero superpressure. Z = 0. 2)

- 20 -



does not occur at the top. It was found that for E = 0. 2, a value of T = 0. 4

would not produce a flat-top balloon. Inspection of Figure 10 shows that the

n.ixirum possible value would be about T = 0. 325.

D. Capped Balloons

The shapes and rneridioral loads for capped balloons are shown in

Figures II and 12. Gorresponding bottom apex angles and gore lengths are

given in Figure 13. The resu!ls show that capped balloons are enough dif-

ferent from noncapped balloons, for a given sigma, so that a different gore

pattern should be used. In Figure 12, it is seen that there is a discontinuity

in the slope of T/P versus s/X at the point where there is a change in sigma.

It is to be expected that in this case. as the weight of balloon material is

doubled, the slope should change by a factor of two.

-21 -
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APPENDIX I

DEFINITION OF SYMBOLS

The symbols used in this series of reports are defined below and illus-

trated in Figure I-1.

Symbol Definition Dimension

a pressure head at bottom of balloon length

b difference in weight densities of air force per unit volume
and inflation gas

k constant = (2 )-I/3

p gas pressure across the balloon force per unit area
material

r radial coordinate of a point on balloon, length
measured normal to the axis of sym-
metry

t circumferential stress in balloon force per unit lengthc material

t meridional stress in balloon material force per unit lengthm

t t constants

s gore coordinate of a point on the bal- length
loon, measured in the meridional
direction from the bottom apex

w unit weight of balloon material force per unit area

z height coordinate of a point on bal- length
loon, measured parallel to the axis
of symmetry from the bottom apex

A area of balloon surface length squared

B buoyant force on balloon force

F vertical load at top apex of balloon force

I-a



I
r

G gross lift of balloon = bV force

L payload suspended at bottom apex force
of balloon

P balloon total payload force

R c radius of curvature in the length
circumferential direction = r/cos 0 [

R radius of curvature in the length
m meridional plane

T total film load = itc rt forcem

V balloon volume length cubed

W balloon weight force

7rt = rt /P
m

Cz = a/h

= z//X

0 angle between tangent to the balloon surface and axis of
symmetry, measured in a plane containing the axis of symmetry I

X= (P/b) 1 / 3  r
I

P = r/

~= sl/x

T = t c/bX 2

= t /b) 2

m m
E. = (21) 1 / 3 (wlb))

1-3
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Figure I-1. Pictorial presentation of principal symbols
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APPENDIX II

BALLOON AREA AND VOLUME BY THE GAUSSIAN FORMU LA

In Appendix I of Scientific Report No. 2 (Reference 2) it was shown that

if the ordinates and slopes are known at both ends of an increment and if a

second degree curve is fitted at these points then

y :- Yol - k) + yn(k) - k(l - k)(y n - yol)(h/)

where (xo , y0 ) and (xn , yn) are the initial and final points of the increment,

y and y' are the initial and final slopesS0 n

h is the increment width, and

k= (x-x 0o)/h where (x 0 x <x).

Using this equation to compute the midpoint of the increment (i. e. , k = 1/2)

it was then possible to apply Simpson's Rule over each increment and thereby

integrate for surface area and volume of the balloon. Some improvement is

possible using Gauss' Formula.

it is stated in Milne (Reference 4) that "These formulas JGauss'; ,- -I,]

higher accuracy in proportion to the number of points utilized than do other

quadrature formulas .. ". The formula given there is:

I

r ydx= A y(x I ) + AZ y(xZ ) + + Ay(x= "" " n Y|n"J
0

where the A i and x. depend upon the degree of the approximating curve. This1

formula is exact for equations of degree 2n-1. In general the Ai and x. are

irrational which makes them difficult to manipulate, as many places must be

carried for maximum accuracy. This objection vanishes when a digital com-

puter is used.

1I-2
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For the problem at hand a fifth-degree approximating curve was chosen.

The yi were calculated and the A. applied as listed in the table below.

i k. A.1 1

1 0.1127017 5/18
2 1/2 419
3 0.8872983 5/18

The yi would have been fitted exactly with a third degree curve (Zn-I is odd)

but a fifth degree curve was used for integration since the yi are squared for

determining volume.

Finally, over any particular increment,
I

A area
area (As)(Aiy I + Azy2 + A3y3)

A volume Z = (Az)[A(Y)2+ A(Y?)2 + A3(Y3) "

Computing balloon volume in this way improves the accuracy over that

obtainable by use of Simpson's Rule. However, the volume still does not con- L
verge as rapidly as the calculation of the balloon shape coordinates or the cal-

culation of the surface area.

1-3 U



For the problem at hand a fifth-degree approximating curve was chosen.

The yi were calculated and the A i applied as listed in the table below.

i k. A.
I 1

1 0.1127017 5/18
Z 1/2 4/9
3 0.8872983 5/18

The Yi would have been fitted exactly with a third degree curve (2n-l is odd)

but a fifth degree curve was used for integration since the Yi are squared for

determining volume.

Finally, over any particular increment,

A area
' (As)(AIY, + AZ2y + A 3 y 3 )

A volume C Z [A 1 Y 1 2 + AA(y)3 +A

Computing balloon volume in this way improves the accuracy over that

obtainable by use of Simpson's Rule. However, the volume still does not con-

verge as rapidly as the calculation of the balloon shape coordinates or the cal-

culation of the surface area.
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